La I.A.
Se denomina inteligencia artificial (IA) a las inteligencias no naturales en agentes racionales no vivos. John McCarthy, acuñó el término en 1956, la definió: "Es la ciencia e ingeniería de hacer máquinas inteligentes, especialmente programas de cómputo inteligentes."
Para explicar la definición anterior, entiéndase a un Agente inteligente que permite pensar, evaluar y actuar conforme a ciertos principios de optimización y consistencia, para satisfacer algún objetivo o finalidad. De acuerdo al concepto previo, racionalidad es más general y por ello más adecuado que inteligencia para definir la naturaleza del objetivo de esta disciplina.
Con lo cual , y de manera más específica la inteligencia artificial es la disciplina que se encarga de construir procesos que al ser ejecutados sobre una arquitectura física producen acciones o resultados que maximizan una medida de rendimiento determinada, basándose en la secuencia de entradas percibidas y en el conocimiento almacenado en tal arquitectura.
Existen distintos tipos de conocimiento y medios de representación del conocimiento, el cual puede ser cargado en el agente por su diseñador o puede ser aprendido por el mismo agente utilizando técnicas de aprendizaje.
También se distinguen varios tipos de procesos válidos para obtener resultados racionales, que determinan el tipo de agente inteligente. De más simples a más complejos, los cinco principales tipos de procesos son:
§ Ejecución de una respuesta predeterminada por cada entrada (análogas a actos reflejos en seres vivos).
§ Búsqueda del estado requerido en el conjunto de los estados producidos por las acciones posibles.
§ Redes neuronales artificiales (análogo al funcionamiento físico del cerebro de animales y humanos).
Categorías de la inteligencia Artificial
§ Sistemas que piensan como humanos.- Estos sistemas tratan de emular el pensamiento humano; por ejemplo las redes neuronales artificiales. La automatización de actividades que vinculamos con procesos de pensamiento humano, actividades como la Toma de decisiones, resolución de problemas, aprendizaje.6
§ Sistemas que actúan como humanos.- Estos sistemas tratan de actuar como humanos; es decir, imitan el comportamiento humano; por ejemplo la robótica. El estudio de cómo lograr que los computadores realicen tareas que, por el momento, los humanos hacen mejor.7
§ Sistemas que piensan racionalmente.- Es decir, con lógica (idealmente), tratan de imitar o emular el pensamiento lógico racional del ser humano; por ejemplo los sistemas expertos. El estudio de los cálculos que hacen posible percibir, razonar y actuar.8
§ Sistemas que actúan racionalmente (idealmente).– Tratan de emular en forma racional el comportamiento humano; por ejemplo los agentes inteligentes .Está relacionado con conductas inteligentes en artefactos.9
§ Inteligencia artificial computacional
§ La Inteligencia Computacional (también conocida como IA subsimbólica-inductiva) implica desarrollo o aprendizaje interactivo (por ejemplo, modificaciones interactivas de los parámetros en sistemas conexionistas). El aprendizaje se realiza basándose en datos empíricos.
La inteligencia artificial y los sentimientos
El concepto de IA es aún demasiado difuso. Contextualizando, y teniendo en cuenta un punto de vista científico, podríamos englobar a esta ciencia como la encargada de imitar una persona, y no su cuerpo, sino imitar al cerebro, en todas sus funciones, existentes en el humano o inventadas sobre el desarrollo de una máquina inteligente.
A veces, aplicando la definición de Inteligencia Artificial, se piensa en máquinas inteligentes sin sentimientos, que «obstaculizan» encontrar la mejor solución a un problema dado. Muchos pensamos en dispositivos artificiales capaces de concluir miles de premisas a partir de otras premisas dadas, sin que ningún tipo de emoción tenga la opción de obstaculizar dicha labor.
En esta línea, hay que saber que ya existen sistemas inteligentes. Capaces de tomar decisiones «acertadas».
Aunque, por el momento, la mayoría de los investigadores en el ámbito de la Inteligencia Artificial se centran sólo en el aspecto racional, muchos de ellos consideran seriamente la posibilidad de incorporar componentes «emotivos» como indicadores de estado, a fin de aumentar la eficacia de los sistemas inteligentes.
Particularmente para los robots móviles, es necesario que cuenten con algo similar a las emociones con el objeto de saber –en cada instante y como mínimo– qué hacer a continuación [Pinker, 2001, p. 481].
Al tener «sentimientos» y, al menos potencialmente, «motivaciones», podrán actuar de acuerdo con sus «intenciones» [Mazlish, 1995, p. 318]. Así, se podría equipar a un robot con dispositivos que controlen su medio interno; por ejemplo, que «sientan hambre» al detectar que su nivel de energía está descendiendo o que «sientan miedo» cuando aquel esté demasiado bajo.
Esta señal podría interrumpir los procesos de alto nivel y obligar al robot a conseguir el preciado elemento [Johnson-Laird, 1993, p. 359]. Incluso se podría introducir el «dolor» o el «sufrimiento físico», a fin de evitar las torpezas de funcionamiento como, por ejemplo, introducir la mano dentro de una cadena de engranajes o saltar desde una cierta altura, lo cual le provocaría daños irreparables.
Esto significa que los sistemas inteligentes deben ser dotados con mecanismos de retroalimentación que les permitan tener conocimiento de estados internos, igual que sucede con los humanos que disponen de propiocepción, interocepción, nocicepción, etcétera. Esto es fundamental tanto para tomar decisiones como para conservar su propia integridad y seguridad. La retroalimentación en sistemas está particularmente desarrollada en cibernética, por ejemplo en el cambio de dirección y velocidad autónomo de un misil, utilizando como parámetro la posición en cada instante en relación al objetivo que debe alcanzar. Esto debe ser diferenciado del conocimiento que un sistema o programa computacional puede tener de sus estados internos, por ejemplo la cantidad de ciclos cumplidos en un loop o bucle en sentencias tipo do... for, o la cantidad de memoria disponible para una operación determinada.
A los sistemas inteligentes el no tener en cuenta elementos emocionales les permite no olvidar la meta que deben alcanzar. En los humanos el olvido de la meta o el abandonar las metas por perturbaciones emocionales es un problema que en algunos casos llega a ser incapacitarte. Los sistemas inteligentes, al combinar una memoria durable, una asignación de metas o motivación, junto a la toma de decisiones y asignación de prioridades con base en estados actuales y estados meta, logran un comportamiento en extremo eficiente, especialmente ante problemas complejos y peligrosos.
En síntesis, lo racional y lo emocional están de tal manera interrelacionados entre sí, que se podría decir que no sólo no son aspectos contradictorios sino que son –hasta cierto punto– complementarios.
No hay comentarios:
Publicar un comentario